3. Fundamentals of Algorithms (06 Periods)
Exchanging value of vanables, counting numbers, Summation of set of numbers,
Factorial computations, Fibonacci number, Reverse of Digits.

Algorithm 2.1
EXCHANGING THE VALUES OF TWO VARIABLES

Problem

Given two variables, a and b, exchange the values assigned to them.

Algorithm development

The problem of interchanging the values associated with two variables
involves a very fundamental mechanism that occurs in many sorting and data
manipulation algorithms. To define the problem more clearly we will
examine a specific example.

Consider that the variables @ and b are assigned values as outlined
below. That is,

Starting configuration
a b
721 463

This means that memory cell or variable a contains the value 721, and
memory cell or variable b contains the value 463. Our task is to replace the
contents of @ with 463, and the contents of b with 721. In other words we
want to end up with the configuration below:

Target configuration
u b

| 463 721

To change the value of a variable we can use the assignment operator.
Because we want a to assume the value currently belonging to b, and b the
value belonging to a we could perhaps make the exchange with the following
assignments:

a:.— b, (1)
b:=a (2)
where “*:=""is the assignment operator. In (1) **:="" causes the value stored

in memory cell b to be copied into memory cell a.

Let us work through these two steps to make sure they have the desired
effect.

We started out with the configuration

a b
721 463
then after execution of the assignment a:= b we have
a b

The assignment (1) has changed the value of a but has left the value of b
untouched. Checking with our target configuration we see that a has
assumed the value 463 as required. 5o far so good! We must also check on b.
When the assignment step (2) i.e. b:=a is made after executing step (1) we
end up with:

a b
463 463



In executing step (2) a is not changed while b takes on the value that currently
belongs to a. The configuration that we have ended up with does not
represent the solution we are seeking. The problem arises because in making
the assignment:

a:=b
we have lost the value that originally belonged to a (i.e. 721 has been lost). It
is this value that we want b to finally assume. Our problem must therefore be
stated more carefully as:
new value of @ := old value of b;
new value of b := old value of g

What we have done with our present proposal is to make the assignment
new value of b := new value of a

In other words when we execute step (2) we are not using the value a that will
make things work correctly—because a has already changed.

To solve this exchange problem we need to find a way of not destroying
“the old value of @ when we make the assignment

a:=b
A way to do this is to introduce a temporary variable ¢ and copy the original
value of a into this variable before executing step (1). The steps to do this
dre:

[ = a;
a:=b
After these two steps we have
a t b
463 721 463

We are better off than last time because now we still have the old value of a
stored in t. It is this value that we need for assignment to b. We can therefore
make the assignment

b:=t

After execution of this step we have:
a t b
463 721 721

Rechecking with our target configuration we sce that a and b have now been
interchanged as required.
The exchange procedure can now be outlined.

Algorithm description

1. Save the original value of @ in .
2. Assign to g the original value of b.
3. Assign to b the original value of a that is stored in 1.

The exchange mechanism as a programming tool is most usefully

implemented as a procedure that accepts two variables and returns their
exchanged values.



Algorithm 2.2
COUNTING

Problem

Given a set of n students’ examination marks (in the range 0 to 100) make a
count of the number ot students that passed the examination. A pass is
awarded for all marks of 50 and above.

Algorithm development

Counting mechanisms are very frequently used in computer algorithms.
Generally a count must be made of the number of items in a set which
possess some particular property or which satisty some particular condition
or conditions. This class of problems is typified by the “examination marks”
problem,.

As a starting point for developing a computer algorithm for this prob-
lem we can consider how we might solve a particular example by hand.

Suppose that we are given the set of marks

55,42, 77,63, 29, 57, 89
In more detail we have:

Marks Counting details for passes

55 previous count = 0 current count=1
Order in 42 previous count= 1 current count =1
which marks 77 previous count= 1 current count=2
are 63 previous count = 2 current count =3
examined 29 previous count=3 current count =3
57 previous count =3 current count=4
89 previous count =4 current count= 15

.*. Number of siudents passed =5

After each mark has been processed the current count reflects the
number of students that have passed in the marks list so far encountered.

We must now ask, how can the counting be achieved? From our
example above we see that every time we need to increase Lhe count we build
on the previous value. That is,

curreni_count = previous_couni+1
When, for example, we arrive at mark 57, we have
previous_count=73

Current_count therefore becomes 4. Similarly when we get to the next mark
(1.e. 89) the current count of 4 must assume the role of previous count. This
means that whenever a new current_count is generated it must then assume
the role of previous count before the next mark is considered. The two steps
in this process can be represented by

current_count := previous_count+1 (1)
previous count :— currernd cound (2)



These two steps can be repeatedly applied to obtain the count required.
In conjunction with the conditional test and input of the next mark we
execute step (1), followed by step (2), followed by step (1), followed by step
(2) and so on.

Because of the way in which previous count is employed in step (1) we
can substitute the expression for previous_count in step (2) into step (1) to
obtain the simpler expression

current_count 1= current_count| 1

1 1

(new value) (old value)

The current_count on the RHS (right-hand side) of the expression assumes
the role of previous count. As this statcment involves an assignment rather
than an equality (which would be impossible) it is a valid computer state-

ment. What it describes is the fact that the new value of current count is
obtained by adding 1 to the old value of current count.

Viewing the mechanism in this way makes it clear that the existence of
the variable previous_count in its own right is unnecessary. As a result we
have a simpler counting mechanism.

The essential steps in our pass-counting algorithm can therefore be
summarized as:

while less then n marks have been examined do

(a) read next mark,
(b) if current mark satisfies pass requirement then add one to count.

Before any marks have been examined the count must have the value zero.
To complete the algorithm the input of the marks and the output of the

number of passes must be included. The detailed algorithm is then as
described below.

Algorithm description

1. Prompt then read the number of marks to be processed.
2. Initialize count to zero.
3  While there are still marks to be processed repeatedly do
(a) read next mark,
(b) if it is a pass (i.e. =50) then add one to count.
4. Write out total number of passes.



Algorithm 2.3
SUMMATION OF A SET OF NUMBERS

Problem

Given a set of n numbers design an algorithin that adds these numbers and
returns the resultant sum. Assume n is greater than or equal to zero.

Algorithm development

Onec of the most fundamental things that we are likely to do with a computer
is to add a set of n numbers. When confronted with this problem in the
absence of a computer we simply write the numbers down one under the
other and start adding up the right-hand column. For example, consider the

addition of 421, 583 and 714.

421
583
714

.. 8

The simplest way that we can instruct the computer’s arithmetic unit to
add a set of numbers is to write down an expression that specifies the
addition we wish to be performed. For our three numbers mentioned previ-
ously we could write

5= 421+583+714 (1)

The assignment operator causes the value resulting from the evaluation
of the right-hand side of statement (1) to be placed in the memory cell
allocated to the variable s.

Expression (1) will add three specific numbers as required. Unfortu-
nately it is capable of doing little else. Suppose we wanted to sum three other
numbers. For this task we would need a new program statement.

It would therefore seem reasonable that all constants in expression (1)
could be replaced by variables. We would then have

§:= a+b+c (2)

A fundamental goal in designing algorithms and implementing prog-
rams is to make the programs general encugh so that they will successfully
handle a wide variety of input conditions. That is, we want a program that
will add any n» numbers where n can take on a wide range of values.

The approach we need to take to formulate an algorithm to add »
numbers in a computer is different from what we would do conventionally to
solve the problem. Conventionally we could write the general equation

5={0|+a2+ﬂ1+ s ‘|'a,,} (3]
T ivalentl = 2 ) 4 (Reminder: ¥ is the
or equivale y s flns @ ( ) mathematical summa

tion operator)



One way to do this that takes note of the fact that the computer adds two
numbers at a time is to start by adding the first two numbers 4, and a,. Thatis,

5= a,ta, (1)
We could then proceed by adding a; to the s computed in step (1).

= cta 2y (cf. counting statement
§IT ST (2) 1f sigorithm 2.2)

In a similar manner:

5= s+a,
§i=stas (3, ... n=1)
£ '= x+a

From step (2) onwards we are actually repeating the same process over and
over—the only difference is that valucs of @ and s change with each step. For
general ' step we have

§:= s+a;,, (i)
This general step can be placed in a loop to iteratively generate the sum of n
numbers.

The core of the algorithm for summing n numbers therefore involves a
special step followed by a set of n iterative steps. That is,

e

Compute first sum (s=0) as special case.
2. Build each of the n remaining sums trom its predecessor by an iterative
process.

3. Write out the sum of n numbers.

Algorithm description

Prompt and read in the number of numbers to be summed.
Initialize sum for zero numbers.
3. While less than n numbers have been summed repeatedly do
(a) read in next number,
(b) compute current sum by adding the number read to the most
recent sum.
4. Write out sum of n numbers.

0



Algorithm 2.4
FACTORIAL COMPUTATION

Problem

Given a number n, compute n factorial (written as n!) where n=0.

Algorithm development

We can start the development of this algorithm by examining the definition

of n!. We are given that
n!l=1x2x3X = x(n—=1)xn for n=1
and by definition
0r=1
In formulating our design for this problem we need to keep in mind that

the computer’s arithmetic unit can only multiply two numbers at a time.
Applying the factorial definition we get

0=1
1'=1x=1
2!=1x2
I=1x2x%3

41 =1=2x3x4

We scc that 4! contains all the factors of 3!. The only diffcrence is the
inclusion of the number 4. We can generalize this by observing that n! can
always he ohtained from (n—1)! hy simply multiplying it by n (forn=1). That
is,

nl=nx(n-1)! for n=1
Using this definition we can write the first few factorials as:
11— 1=0
21=2x1!
31=3x2!

4!1=4x3!

If we start with p=0!=1 we can rewrite the first few steps in computing n!
as:

p:=1 (1) =0!
p = p*1l =1!

1= p*l =12|
§:= ;*3 2..n+1) 5,
p = p*4 = 4!



From step (2) onwards we are actually repeating the same process over and
over. For the general (i+1)" step we have
p:=p*x  (i+1)

‘I'his general step can be placed in a loop to iteratively generate n!. This
allows us to take advantage of the fact that the computer’s arithmetic unit
can only multiply two numbers at a time.

In many ways this problem is very much like the problem of summing a
set of n numbers (algorithm 2.3). In the summation problem we performed a

set of additions, whereas in this problem we need to generate a set of
products. It follows from the general (i+1)™ step that all factorials for n=1
can be generated iteratively. The instance where n = 0 is a special case which
must be accounted for directly by the assignment

p:=1 (by definition of 0!)

The central part of the algorithm for computing n! therefore involves a
special initial step followed by n iterative steps.

1. Treat 0! as a special case (p := 1).

2. Build each of the n remaining products p from its predecessor by an
iterative process.

3. Write out the value of n factorial.

Algorithm description

1. Establish n, the factorial required where n=0.
2. Set product p for 0! (special case). Also set product count to zero.
3. While less than n products have been calculated repeatedly do
(a) increment product count,
(b) compute the i product p by multiplying i by the most recent
product.
4. Return the result nl.



Algorithm 2.6
GENERATION OF THE FIBONACCI SEQUENCE

Problem

Generate and print the first n terms of the Fibonacci sequence where n=1.
The first few terms are:

0,1,1,2,3,5, 8,13, ...

Each term beyond the first two is derived from the sum of its two nearest
predecessors.

Algorithm development
From the definition we are given that:
new term = preceding term+term betore preceding term

‘T'he last sentence of the problem statement suggests we may be able to use
the definition to generate consecutive terms (apart from the first two)
iteratively.

Let us detine:

a as the term before the preceding term
h as the preceding term
C  HEW ferm

Then to start with we have:

a:=10 first Fibonacci number
b:=1 second Fibonacci number
and c:=a+h third Fibonacci number (from definition)

Algorithm description

1. Prompt and read n, the number of Fibonacci numbers to be generated.

2. Assign first two Fibonacci numbers a and b.
3. Initialize count of number generated.
4. While less than n Fibonacci numbers have been generated do

(2) write out next two Fibonacci numbers;

(b) generate next Fibonacci number keeping a relevant;
(c) generate next Fibonacci number from most recent pair keeping b
relevant for next computation;
(d) update count of number of Fibonacci numbers generated, i.
5. If n even then write out last two Fibonacei numbers else write out

second last Fibonacci number.



Algorithm 2.7
REVERSING THE DIGITS OF AN INTEGER

Problem

Design an algorithm that accepts a positive integer and reverses the order of
its digits.

Algorithm development

Digit reversal is a technique that is sometimes used in computing to remove
bias trom a set of numbers. It is important in some fast information-retrieval
algorithms. A specific example clearly defines the relationship of the input to
the desired output. For example,

Input: 27953
Output: 35972

We can get the number 2795 by integer division of the vriginal number

by 10
i.e. 27953 div 102795

This chops off the 3 but does not allow us to save it. However, 3 is the
remainder that results from dividing 27953 by 10. To get this remainder we
can use the mod function. That is,

27953 mod 10—3
Therefore if we apply the following two steps

r:=n mod 10 (1)==(r—=13)
n:=n div 10 (2)==(n=2795)

we getthe digit 3, and the new number 2795, Applying the same two steps to
the new value of n we can obtain the 5 digit. We now have a mechanism for
itcratively accessing the individual digits of the input number.

Qur next major concern is to carry out the digit reversal. When we apply
our digit extraction procedure to the first two digits we acquire first the 3 and
then 5. In the final output they appear as:

3 followed by 5 {or 35)

If the original number was 53 then we could obtain its reverse by first
extracting the 3, multiplying it by 10, and then adding 5 to give 35. That is,

3X10+5—>35

The last three digits of the input number are Y53. They appear in the
“reversed’ number as 359. Therefore at the stage when we have the 35 and
then extract the 9 we can obtain the sequence 359 by multiplying 35 by 10
and adding Y. That is,



35x10+9—359
Similarly
359x 10+ 7—3597

and
3597 x 10+ 2—35972

Rewriting the multiplication and addition process we have just
described in terms of the variable dreverse we get

Iteration Value of dreverse
[1] dreverse := dreverse*10+3 3
[2] dreverse := dreversex10+5 35
[3] dreverse := dreverse*10+9 359

Therefore to build the reversed integer we can use the construct:

dreverse := (previous value of dreverse)*10
+(most recently extracted rightmost digit)

The variable dreverse can be used on both sides of this expression. For the
value of dreverse to be correct (i.e. dreverse = 3) after the first iteration it
must initially be zero. This initialization step for dreverse is also needed 10
ensure that the algorithm functions correctly when the input number to be
reversed is zero.

Algorithm description

1. Establish n, the positive integer to be reversed.
2. Set the initial condition for the reversed integer dreverse.
3. While the integer being reversed is greater than zero do

(a) use the remainder function to extract the rightmost digit of the
number being reversed;

(b) increase the previous reversed integer representation dreverse by
a factor of 10 and add to it the most recently extracted digit to give
the current dreverse value;

(c) use integer division by 10 to remove the rightmost digit from the
number being reversed.



Chapter 3
FACTORING METHODS

Algorithm 3.1
FINDING THE SQUARE ROOT OF A NUMBER

Problem

Given a number m devise an algorithm to compute its square Toot.

Algorithm development

When initially confronted with the problem of designing an algorithm to
compute square roots, we may be at a loss as to just where to start. In these
circumstances we need to be really sure of what is meant by “‘the square root
of a number”. Taking some specific examples, we know that the square root
of 4 is 2, the square root of 9 is 3, and the square root of 16 is 4 and so on.
That is,

2x2=4
Ix3=9
4x4—16

From these examples we can conclude that in the general case the square
root n, of another number m must satisfy the equation

nxXn=m (1)
To try to make progress lowards a better algorithm, let us again return

to the problem of finding the square root of 36. In choosing 9 as our initial
guess, we found that

92 =81 which is greater than 36.

We know from equation (1) that the 9 should divide into 36 to give a
quotient of 9 if it is truly the square root. Instead 9 divides into 36 o give 4.
Had we initially chosen 4 as our square root candidate, we would have found

44 =16 which is less than 36.

From this we can see that when we choose a square root candidate that is too
large, we can readily derive from it another candidate that is too small. The
larger the guess is that is too large, the correspondingly smaller will be the
guess that is too small. In other words, the ¥ and the 4 tend to cancel out each
other by deviating from the square m in opposite directions. Thus,

Square Square Root
81 - - - - — - — = - -~ 9
36 - - - — — . _ _ _ _ _ 79
16 — = = = = = = — = — - 4

The square root of 36 must lie somewhere between 9, which is too big, and 4,
which is too small. Taking the average of 9 and 4:



(9+4) _

5 6.5
gives us an estimate *'in between™ 9 and 4. This new estimate may again be
either greater than 36, equal to, or less than 36. We find that 6.5? = 42.25

which is greater than 36. Dividing this new value into 36:
36
6,5_5'53

we see that it again has a complementary value (i.e. 5.53) that is less than 36.
Thus,

Square Square Root
81 greater 9
42.25 than 36 6.5
36 - = = m e — - — = 29
30.5809 } less  5.53
16 than 36 4

We now have two estimates of the square root. one on either side, that are
closcr than our first two cstimates.

We can proceed to get an even better estimate of the square root by
averaging these two most recent guesses:

(6.5+5.53)/2=6.015

Qwur first task now is to clarify the averaging rule that we intend to use to
generate successively better approximations to the desired square root. To
work this out, let us return to the *‘square root of 36 problem™. As our initial
guess gl we chose 9. We then proceeded to average this guess with its
complementary value (36/9=4). In the general case, the complementary
value is given by

complementary value := =
gl
Our next step was (o get an improved estimate of the square root, g2, by
averaging gl and its complementary value (i.e. (9+36/9)/2=6.5). We can
therefore write the expression for g2 in the general case as

g2 := (g1+(m/gD)/2

Algorithm description

1. Establish m the number whose square root isrequired and the termina-
tion condition error e.

2. Set the initial guess g2 to m/2.

3. Repeatedly
(a) let gI assume the role of g2,

(b) generate a better estimate g2 of the square root using the averag-
ing formula,
until the absolute difference between gi and g2 is less than error e.
4, Return the estimated square root g2.



Algorithm 3.2
THE SMALLEST DIVISOR OF AN INTEGER

Problem

Given an integer n devise an algorithm that will find its smallest exact divisor
other than one.

Algorithm development

Taken at face value, this problem seems to be rather trivial. We can take the
set of numbers 2, 3, 4, ..., n and divide each one in turn into 1. As soon as we
encounter a number in the set that exactly divides into n our algorithm can
terminate as we must have found the smallest exact divisor of s, This is all
very straightforward. The question that remains, however, is can we design a
more efficient algorithm?

As a starting point for this investigation, let us work out and examine
the complete set of divisors for some particular number. Choosing the
number 36 as our example, we find that its complete set of divisors is

2,3, 4, 6,9, 12, 18}

We know that an exact divisor of a number divides into that number leaving
no remainder. ['or the exact divisor 4 of 36, we have:

36

404|aalalala]4
1

That is, there are exactly 9 foursin 36. It also follows that the bigger number
0 also divides exactly into 36. That is,

36

4

36

= 504

9

and 36 N
4x9

—= 9

1

Similarly, if we choose the divisor 3, we find that it tells us that there is a
bigger number 12 that is also an exact divisor of 36. From this discussion we
can draw the conclusion that exact divisors of a number must be paired.

Clearly, in this example we would not have (o consider either 9 or 12 as
potential candidates for being the smallest divisor because both are linked
with another smaller divisor. For our complete set of divisors of 36, we see
that:

Smaller factor Bigger factor 6
2 is linked with 18 (i.e. 5 = 18)
3 is linked with 12
4 is linked with 9
6 is linked with 6



From this set, we can see that the smallest divisor (2) is linked with the
largest divisor (18), the second smallest divisor (3) is linked with the second
biggest divisor (12) and so on. Following this line of reasoning through we
can see that our algorithm can safely terminate when we have a pair of
factors that correspond to

(a) the biggest smaller factor s,
(b) the smallest bigger factor b.

Algorithm description

1. Establish n the integer whose smallest divisor is required.
2. If nis not odd then return 2 as the smallest divisor
else
(a) compute r the square root of n,
(b) initialize divisor d to 3,
(c) while not an exact divisor and square root limit not reached do
(c.1) generate next member in odd sequence d,
(d) if current odd value d is an exact divisor
then return it as the exact divisor of n
else return 1 as the smallest divisor of n.



Algorithm 3.3
THE GREATEST COMMON DIVISOR OF TWO INTEGERS

Problem

Given two positive non-zero integers n and m design an algorithm for finding
their greatest common divisor (usually abbreviated as ged).

Algorithm development

When initially confronted with this problem, we see that it is somewhat
difterent tfrom other problems we have probably encountered. The ditticult

aspect of the problem involves the relationship between the divisors of two
numbers. Our first step might therefore be to break the problem down and
find all the divisors of the two integers n and m independently. Once we have
these two lists of divisors we soon realize that what we must do is select the
largest element common to both lists.* This element must be the greatest
common divisor for the two integers n and m.

For our example, we have:

(a) the greatest divisor of 30 is 30;
(b) the greatest divisor of 18 is 18.

Our problem is to find the greatest common divisor of two numbers rather
than one number. Clearly no number greater than 18 can be a candidate for
the ged because it will not divide exactly into 18. We can in [acl generalize
this statement to say that the ged of two numbers cannot be bigger than the
smaller of the two numbers. The next question we might ask is, can the ged of
two numbers be equal o the smaller of those (wo numbers (this is not true in
the case of 18 and 30 but if we were considering 12 and 36 we would find that
12 is the ged)? We can therefore conclude that the smaller of the two
numbers n# and m must be the upper limit for the ged.

We must now decide how to continue when the smaller of the two
numbers n and m is not their ged.

Our task now is to work out the details for implementing and terminating the
ged mechanism. First let us consider how to establish il the smaller number
exactly divides into the larger number. Exact division can be detected by
there being no remainder after integer division. The mod function allows us

(o compulte the remainder resulting from an integer division, We can use:

r:=nmod rm



provided we had initially ensured that n=rm. If ris zero, thenm is the ged. If
is not zero, then as it happens it corresponds to the ““non-common’ part
between n and m. (E.g. 30 mod 18 = 12.) Itis therefore our good fortune that
the mod function gives us just the part of n we need [or solving the new
smaller ged problem. Furthermore, r by definition must be smaller than m.
What we need to do now is set up our iterative construct using the mod
[function. To try to formulate this construct, let us return o our ged (18, 30)
problem.
For our specific example we have:

r:= 30 mod 18=12 step (1)
r:=18mod 12= 6 step (2)
r:=12mod 6= 0 step (3)

L_._ — “the ged”

Our example suggests that with each reduction in the problem size the
smaller integer assumes the role of the larger integer and the remainder
assumes the role of the smaller integer.

Algorithm description

1. Establish the two positive non-zero integers smaller and larger whose
ged is being sought.

2. Repeatedly
(a) get the remainder from dividing the larger integer by the smaller

integer;

(b) let the smaller integer assume the role of the larger integer;
(¢) let the remainder assume the role of the divisor
until a zero remainder is obtained.

3. Return the ged of the original pair of integers.



Algorithm 3.4
GENERATING PRIME NUMBERS

Problem

Design an algorithm to establish all the primes in the first n positive integers.

Algorithm development

The efficient generation of prime numbers is an open problem. We will
consider here the more restricted problem of generating all primes in the
first n integers. A prime number is a positive integer that is exactly divisible
only by 1 and itself. The first few primes are:

23571113 17 19 23 29 31 37 ...

For large n this still leaves us with a large set of numbers to consider. So far
we have eliminated numbers divisible by 2. Can we extend this to eliminating
numbers divisible by 3, 5, and so on? To explore this idea let us first write
down the odd sequence with the multiples of 3 removed. We have:

3 5 7 11 13 17 19 23 25 129,
NANSNANSN NN NN
2 2 4 2 4 2 4 2 4 .

Beyond 5 we have the alternating sequence of differences 2, 4. This alternat-

ing difference sequence should be able to be generated. We will not dwell on
it here but it is easy to see that the construct below with dx initially 4

dx 1= abs(dx—6)

has the desired behavior. This device will allow us to eliminate two-thirds of
the numbers from consideration as potential prime numbers candidates.
We might now ask can we eliminate multiples of 5 in a similar manner?

The answer is yes but it would be slightly more involved. This line of attack
does not seem as though it is going to be very fruitful. What we do see from
this however is that one way 1o generate prime numbers is to simply write
down the list of all integers then cross out multiplesof 2, 3,5, 7. 11, and so
on.

(@) 23 45789 1011 1Z 13 1415 16 17 18 19

J' multiples of 2 crossed out

(b) 2 3 57 911 13 15 17 19

\ multiples of 3 crossed out

() 2357 11 13 17 19



At this stage we can propose a basic structure for our algorithm:

while x<n do
begin
(a) generate next x using the construct dx := abs(dx—6),
(b) test whether x is prime using all primes <\/x,
(c) if a prime is found that is less than \/n then store it for
later testing against larger x values.
end

Totest all integers up to n for primality we will need to retain all primes up to
Vvn.

Every time a new x is brought up for testing we will need to ensure that
we have the appropriate set of primes to divide into x.

Working through some examples we find:

X range prime divisors required
2=x<9 2
9=x<25 2.3
25=x<49 2,3,5
2,3,5,7

49=x=1121

Some thought reveals there are two conditions under which this loop
should terminate:

1. an exact divisor of x has been found—so it cannot be prime;
2. we have reached the divisor with index one less than limit.

Using the mod function to test for exact division and using the remainder
rem to set the Boolean condition prime we get:

j:= 3, prime := true,
while prime and (j<<limit) do
begin

rem := x mod p[ ]
prime := rem <<= 0;
ji=j+1

end

We can use this information to *cross out” in advance the next value ot x
divisible by p[k]. To do this another array ouf{ 1. .\/n] will be needed to store
values crossed out in advance. The crossing out is done by

nxtout ;= plk]— rem;
oul[nxtout] := false

‘T'he idea will then be to check the array out before testing a given number for
primality. If it is already *“‘crossed out” no prime testing need be done. An
investigation and testing of this idea shows that it will allow us to cut down by
a factor ot 4 or 5 the number of numbers that have to be tested for primality.



This sounds like a useful refinement. Unfortunately whenever a prime x is
gncountered all prime divisors less than \/x must be tested against it. For
large n establishing the primes by this method is going to be computationally

costly.

Algorithm description

1.

Initialize and write out the first 3 primes. Also initialize the square of
the 3™ prime.

2. Initialize x to 5.
3. While x less than n do
(a) get next x value excluding multiples of 2 and 3;
(b) if not past end of multiples list then
(b.1) if x= square of largest prime then
(1.a) include next prime multiple as its square,
(1.b) update square by squaring next prime =>\/x;
(c) while have not established x is non-prime with valid prime multi-
ples do
(c.1) while current prime multiple is less than x, increment by
current prime value doubled,
(¢.2) do prime test by comparing x with current multiple;
(d) if current x prime then
(d.1) write out x and if it is less than \/n store it.
Algorithm 3.5
COMPUTING THE PRIME FACTORS OF AN INTEGER
Problem

Every integer can be expressed as a product of prime numbers. Design an
algorithm to compute all the prime factors of an integer n.

Algorithm development

Examination of our problem statement suggests that

n=fixfoxf, - xf, where n>1 and fi=f,= - =f,

The elements f, f5, ..., fi are all prime numbers. Applying this definition to
some specific examples we get:

R=2%x2x2
12=2%x2%3
18=2x3x%3
20=2%x2x%5

60 =2x2x3x5



A better and more economical strategy is therefore to only compute
prime divisors as they are needed. For this purpose we can include a
modified version of the sieve of Eratosthenes that we developed earlier. As
in our earlier algorithm as soon as we have discovered n is prime we can
terminate. At this stage let us review the progress we have made. The
top-level description of the central part of our algorithm is:

while ““it has not been established that n is prime” deo
begin
(a) if nxtprime is divisor of n then save nxtprime as a factor and
reduce n by nxtprime
else get next prime,
(b) try nxtprime as a divisor of n.
end

We now must work out how the “not prime’” test for our outer loop should
be implemented. The technique we employed earlier was (o use integer
division and test for zero remainder. Once again this idea is applicable. We
also know that as soon the prime divisor we are using in our test becomes
greater than Vi the process can terminale.

Initially when the prime divisors we are using are much less than \/n we
know that the testing must continue. In carrying out this process we want to
avoid having to calculate the square root of n repeatedly. Each time we make
the division:

n div nxtprime (e.g. 60 div 2)

we know the process must continue until the quotient g resulting from this
division is less than nxtprime.
At this point we will have:

(nxtprime)® =n

which will indicate that n is prime. The conditions for it not yet being
established that »n is prime are therefore:

(a) exact division (i.e. r := n div nxtprime = 0),
(b) quotient greater than divisor (i.e. g := n mod nxtprime=>nxtprime).

The truth of either condition is sufficient to require that the test be repeated
again.

Algorithm description

1. Establish n the number whose prime factors are sought.
2. Compute the remainder r and quotient g for the first prime
nxtprime = 2.
3. While it is not established that nis prime do
(a) if nxtprime is an exact divisor of n then
(a.1) save nxtprime as a factor f,
(a.2) reduce n by nxtprime,
else
(a’.1) get next biggest prime from sieve of Eratosthenes,
(b) compute next quotient ¢ and remainder r for current value of n
and current prime divisor nxtprime.
4. If n is greater than 1 then
add n to list as a prime factor f.
S. Return the prime factors f of the original number n.



Arrays
2.1 DEFINITION

An array is a finite, ordered and collection of homogencous data elements. Array is finite
because it contains only limited number of elements; and ordered, as all the elements are stored
one by one in contiguous locations of computer memory in a linear ordered fashion. All the
elements of an array are of the same data type (say, integer) only and hence it is termed as
collection of homogeneous elements. Following are some examples:

1. An array of integers to store the ape of all students in a class.
2, An array of strings (of characters) to store the name of all villagers in a village.

2.2 TERMINOLOGY

Size. Number of elements in an array is called the size of the array. It is also alternatively
termed as length or dimension.

Type. Type of an array represents the kind of data type it is meant for. For example, array
of integers, array of character strings, etc.

Base. Base of an array is the address of memory location where the first element in the array
is located. For example, 453 is the base address of the array as mentioned in Figure 2.1.

Index. All the clements in an array can be referenced by a subscript like A; or A[i], this
subscript is known as index. Index is always an integer value. As cach array elements is identificd
by a subscript or index that is why an array element is also termed as subscripted or indexed
variable.

2.3 ONE-DIMENSIONAL ARRAY

If only one subscript/index is required to reference all the elements in an array then the array
will be termed as one-dimensional array or simply an array.

2.3.1 Memory Allocation for an Array

Memory representation of an array is very simple. Suppose, an array A[100] is to be stored in
a memory as in Figure 2.2. Let the memory location where the first element can be stored is
M. If each element requires one word then the location for any element say A[i] in the array
can be obtained as:

Address (Ali) =M+ (i - 1)

M >

s WN -

100

Fig. 2.2 Physical representation of a one-dimensional array.



Likewise, in general, an array can be written as A[L ... U], where L and U denote the lower and
upper bounds for index. If it is stored starting from memory location M, and for each element
it requires w number of words, then the address for A[i] will be

Address (Ali) =M+ (i-L)xw

The above formula is known as indexing formula; which is used to map the logical presentation
of an array to physical presentation. By knowing the starting address of an array M, the location
of i-th element can be calculated instead of moving towards i from M. Figure 2.3,

L <~ M
L+1
Al = /
M+(i-L)xw
I Mapping function
s
U-1 :
u T T
Logical view Physical view

Fig. 2.3 Address mapping between logical and physical views of an array.
2.3.2 Operations on Arrays

Various operations that can be performed on an array are: traversing, sorting, searching, insertion,
deletion, merging.

Traversing

This operation is used visiting all elements in an array. A simplified algorithm is presented as
below:

Algorithm TRAVERSE_ARRAY( )
Input: An array A with elements.
Output:  According to PROCESS( ).
Data structures: Array A[L ... U]. /IL and U are the lower and upper bound
/lof array index
Steps:
l.i=L //Start from first location L
2. While i S U do
1. PROCESS(AL[i])
2.i=i+1 /Move to the next location
3. EndWhile
4. Stop



2.4 MULTIDIMENSIONAL ARRAYS

So far we have discussed the one dimensional arrays. But multidimensional arrays are also
important. Matrix (2- dimensional array), 3-dimensional array are two examples of multidimensional
arrays. The following sections describe the multidimensional arrays.

241 Two-dimensional Arrays

Two-dimensional arrays (alternatively termed as matrices) are the collection of homogencous
elements where the elements are ordered in a number of rows and columns. An example of an
m X n matrix where m denotes number of rows and n denotes number of columns is as follows:

M %2 O3 G4 --- G
@ Gn Gy Gy ... Gy
I B B S

mxn

The subscripts of any arbitrary element, say (a;) represent the i-th row and j-th column.

Memory representation of a matrix

Like one-dimensional array, matrices are also stored in contagious memory locations. There are
two conventions of storing any matrix in memory:

1. Row-major order
2. Column-major order.

In row-major order, elements of a matrix are stored on a row-by-row basis, that is, all the
elements in first row, then in second row and so on. On the other hand, in column-major order,
clements are stored column-by-column, that is, all the elements in first column are stored in
their order of rows, then in second column, third column and so on. For example, consider a
matrix A of order 3 x 4:

4 @ d3 dy

iy 8p G Oy
a

=

1 dn Gy Oy,

This matrix can be represented in memory as shown in Figure 2.9.

ayy ;;: ayn
342 az
a3 ;:\. 31
A 5:: ay2
s o
032 /7\‘ ay;
a2 e 8\ ap
- ;s:Q 2
[
e
Row-major order Column-major order

Fig. 2.9 Memory representation of A,, 4 matrix.



Algorithm 4.1
ARRAY ORDER REVERSAL

Problem

Rearrange the elements in an array so that they appear in reverse order.

Algorithm development

The problem of reversing the order of an array of numbers appears to be
completely straightforward. Whilst this is essentially true, some care and
thought must go into implementing the algorithm.

We can start the design of this algorithm by careful examination of the
clements of an array before and after it has been reversed; for example,

|1{2]3F4|5‘6|7| before reversal

|7‘6‘5[4|3[2|1| after reversal

What we observe from our diagram is that the first element ends up in
the fast position. The second clement ends up in the second {ust position and
so on. Carrying this process through we get the following set of exchanges:

ol |
23 a]s]6]7] armaya. n

tort |

In terms of suffixes the exchanges are:

step [1] a[1]<==ua[7]
step | 2] a| 2]<==a| 6]
step[3]  a[3]<=>a[5]
step [4] a[4]<==ual[4] there is no exchange here

Each exchange (cf. algorithm 2.1) can be achieved by a mechanism of

the form
t = a[l];
ali] := a[ln—i+1];
aln—i+1] := 1«

The only other aspect of the algorithm that we need to consider is the
range that { can assume for a given ». Studying our original array it is clear
that only 3 exchanges are needed to reverse arrays with either 6 or 7
elements. Consideration of further examples leads us to the generalization
that the number of exchanges r to reverse the order of an array is always the
nearest integer that is less than or equal half the magnitude of n. Our
algorithm now follows directly from the above results and discussion.

Algorithm description

1. Establish the array a[1..n] of n elements to be reversed.
2. Compute r the number of exchanges needed to reverse the array.
3. While there are still pairs of array elements to be exchanged
(a) exchange the i element with the [n—i+1]" element.
4. Return the reversed array.

The algorithm can be suitably implemented as a procedure that accepts
as input the array to be reversed and returns as output the reversed array.



Algorithm 4.2
ARRAY COUNTING OR HISTOGRAMMING

Problem

Given a set of n students’ examination marks (in the range 0 to 100) make a
count of the number of students that obtained each possible mark.

Algorithm development

This problem embodies the same principle as algorithm 2.2 where we had to
make a count of the number of students that passed an examination. What
we are required to do in this case is obtain the distribution of a set of marks.
This problem is typical of frequency counting problems. One approach we
could take is to set up 101 variables CO C1, C2, ..., C100 each corresponding
to a particular mark. The counting strategy we could then employ might be
as follows:

while less than n marks have been examined do
(a) get next mark m,

(b0) if m=0 then C0 := C0+1;

(bl) if m=1 then C1 := Cl+1;

(b2) il m=2 then C2 := C2+1;

{tn:3) if m=3then C3 := C3+1;

(E;IDU) if =100 then C100 := C100+1.

What we must now consider is just how the count for each array location
is achieved. In setting up our mechanism we want to try to incorporate the
one-step procedure that was possible in the hand solution. Initially we can
consider what happens when a particular mark is encountered. Suppose the
current mark to be counted is 57. In using the array for counting we must at
this stage add one to the count stored in location 57. For this step we can use
the actual mark’s value (i.e. 57) to reference the array location that we wish
to update. That is, the mark’s value can be employed as an array suffix.
Because it is necessary 1o add one 10 the previous count in location 37, we
will need a statement of the form:

new count in location 57 := previous count in location 57+1

Since location a[57] must play both the “previous count’ and ‘*new count™
roles, we can write

a[57] := a[57]+1
or for the general mark m we can write

alm] := a[m]+1

This last statement can form the basis of our marks-counting algorithm. By
using the mark valuc to address the appropriate array location, we have
modelled the direct update method of the hand solution.

Algorithm description

1. Prompt and read in n the number of marks to be processed.
2. Initialize all elements of the counting array a[0..100] to zero.
3. While there are still marks to be processed, repeatedly do

(a) read next mark m.

(b) add one to the count in location m in the counting array.
4. Write out the marks frequency count distribution.



Algorithm 4.3
FINDING THE MAXIMUM NUMBER IN A SET

Problem

Find the maximum number in a sct of n numbers.

Algorithm development

Before we begin to work on the algorithm for finding the maximum we nced

to have a clear idea of the definition of a maximum. After consideration we
can conclude that the maximum is that number which is greater than or equal
to all other numbers in the set. This definition accommodates the fact that
the maximum may not be unique. It also implies that the maximum is only
defined for sets of one or more elements.

To start on the algorithm development for this problem let us examine a
particular set of numbers. For example,

86| s|is]7]19]21]6]13

After studying this example we can conclude that all numbers need to be
examined to establish the maximum. A second conclusion is that comparison
of the relative magnitude of numbers must be made.

Imagine for a moment that we are given the task of finding the maxi-
mum among one thousand numbers by having them flashed up on a screen
one at a time. This task is close to the problem that must be solved to
implement the computer algorithm. When the first number appears on the
screen we have no way of knowing whether or not it is the maximum. In this
situation the best that we can do is write it down as our temporary candidate
for the maximum. Having made the decision to write down the first number
we must now decide what to do when the second number appears on the
screen. Three situations are possible:

1. the second number can be less than our temporary candidate for the
maximum;

2. the second number can be equal to our temporary candidate for the
maximum,;

3. thesecond number can be grearer than our temporary candidate for the
maximum.

If situations (1) or (2) apply our temporary candidate for the maximum
is still valid and so there is no need to change it. In these circumstances we
can simply go ahead and compare the third number with our temporary
maximum which we will call max.

Algorithm description

1. FEstablish an array a[1..n] of n elements where n=1.
2. Set temporary maximum max to first array element.

3. While less than n array elements have been considered do
(a) if next element greater than current maximum max then
assign it to max.
4, Return maximum max for the array of n elements.



Algorithm 4.6
FINDING THE k' SMALLEST ELEMENT

Problem

Given a randomly ordered array of n elements determine the k™ smallest
element in the set.

Algorithm development

We have already seen an algorithm for finding the largest value in a set. The
current problem is a generalization of this problem. As we saw in the
partitioning problem (algorithm 4.5), one way to find the k&'* smallest ele-
ment would be to simply sort the elements and then pick the k™ value. We
may, however, suspect that this problem could be treated in a similar fashion
to the partitioning problem. In the partitioning problem, we knew in
advance the value x about which the array was to be partitioned but we did
not know how many values were to be partitioned on either side of x. The
current problem represents the complementary situation where we are given
how the array is to be partitioned but we do not know in advance the value of
x (i.c. the k'™ smallest value).

1. k™ smallest in subset =x:
k

kth smallest in this subset

! joi t_k position u

Here we set [ := i and repeat the partitioning process for the new limits
of l and u.

2. k™ smallcst in subsct =x:

k

k'™ smallest in this subsct
! k™ position — 1 ji u

Here we set u := j and repeat the partitioning process tfor the new limits
of u and I By examining the values of i and j on termination of the
partitioning loop we know which subsct contains the k™ smallest value and
hence which limit must be updated. The two tests we can use are

if j<k then I := i;
if i>k then u :=j

The partitioning process need only continue while /<wu. The variables i and j
will nced to be resct to the adjusted limits / and « before beginning cach new
partitioning phase.



The basic mechanism may therefore take the form:

while I<u do
(a) choose some value x about which to partition the array,
(b) partition the array into two partitions marked by / and j,
(c) update limits using the tests
if j<k then [ := i
if i>k then u := |
lem. The difference we may anticipate at this stage is that x will be selected
using

x — alk]

rather than having x with a given value as in the earlier problem. Unlike in
the partitioning problem, because x is selected from the array, we should be
able to avoid the complications caused by the fact that it could be outside the
bounds of the array. In the “‘moving-inwards” process the loop

while a[j]>x do j := j—1

is guarantced to stop because it must eventually run into x. There is,
however, a problem with

while g[i]=<xdo i := i+1

because it will not stop on encountering the array value equal to x. Can we
prevent this? The answer is yes, if we change the = to a < sign, forexample,

while ali]l<x doi:= i+1

We are better off this time than with the earlier algorithm because it is no
longer possible for the two while-loops to cause i and j to cross over before
the last exchange in the current iteration of the outer partition loop. This is
because x is always kept between the { and j positions. The conditional test
controlling exchanges:

if i=<j then “‘exchange”

becomes unnecessary. We now, therefore, have a simpler and more efficient
algorithm, The detailed description of our final algorithm is given below.

Algorithm description

1. Establish a[1..n] and the requirement that the &' smallest element is
sought.
2.  While the left and right partitions do not overlap do
(a) choose a[k] as the current partitioning value x;
(b) set i to the upper limit ! of the left partition;
(c) setjto the lower limit u of the right partition;
(d) while i has not advanced beyond k and j is greater than or equal to
k do
(d.1) extend the left partition while a[i]<x;
(d.2) extend the right partition while x<<a[j];
(d.3) exchange a[{] with a[/];
(d.4) extend i by 1 and reduce j by 1;
(e) if &' smallest in left partition, update upper limit u of left parti-
tion;
() il &A™ smallest in right partition, update lower limit ! of right
partition.
3. Return the partitioned array with elements =g[k] in the first k& posi-
tions in the array.



